Infinite Products in Number Theory and Geometry
نویسندگان
چکیده
We give an introduction to the theory of Borcherds products and to some number theoretic and geometric applications. In particular, we discuss how the theory can be used to study the geometry of Hilbert modular surfaces.
منابع مشابه
Application of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملAN INTRODUCTION TO THE THEORY OF DIFFERENTIABLE STRUCTURES ON INFINITE INTEGRAL DOMAINS
A special class of differentiable functions on an infinite integral domain which is not a field is introduced. Some facts about these functions are established and the special case of z is studied in more detail
متن کاملPhysics as Infinite-dimensional Geometry and Generalized Number Theory: Basic Visions
There are two basic approaches to the construction of quantum TGD. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the ”world of classical worlds” identified as the space of 3-surfaces in in certain 8-dimensional space. Essentially a generalization of the Einstein’s geometrization of physics program is in question. The second vision is the ...
متن کاملGluing an Infinite Number of Instantons
This paper is one step toward infinite energy gauge theory and the geometry of infinite dimensional moduli spaces. We generalize a gluing construction in the usual Yang-Mills gauge theory to an “infinite energy” situation. We show that we can glue an infinite number of instantons, and that the resulting instantons have infinite energy in general. Moreover they have an infinite dimensional param...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کامل